
Review

Journal of Experimental and Basic Medical Sciences 2022;3(2):90-96

JOURN
A

L 
O

F
 E

X
P

ER
IM

ENTAL AND BASIC M
E

D
IC

A
L S

C
IEN

CES

2019

JEBMS

The Warburg Effect on Cancer Formation and Progression

Gökçen Kılınç1, Hadi Sasani2, Oytun Erbaş3 

ABSTRACT

The energy requirements of cell development are met by 
complete glucose catabolism, which utilizes mitochondrial 
oxidative phosphorylation to boost adenosine 
5'-triphosphate production. While aerobic glycolysis can 
begin in tumor cells when respiration is compromised, 
anaerobic glycolysis starts when oxygen is not present. 
In cancer cells, aerobic glycolysis with oxygen results in 
enhanced glucose uptake and lactic acid production. The 
Warburg effect is an abnormal tendency of tumors to 
produce lactate in an environment with normal oxygen 
levels. Due to the reputation of early researchers and the lack 
of more advanced means to examine lactate metabolism, 
the notion that lactate generation originates from oxygen 
deprivation has survived. The purpose of this review was to 
discuss the Warburg effect's mechanism, clinical implications, 
and diagnostic uses in the context of the literature.
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The Warburg effect is a situation in which normal 
cells require mitochondrial oxidative phosphorylation, 
whereas malignant cells depend on aerobic glycolysis 
to produce the energy required for cellular functions. 
By showing that cultivated tumor tissues exhibit 
high rates of glucose uptake and lactate release even 
in the presence of oxygen, Otto Heinrich Warburg 
initially characterized this effect in 1924. The three 
factors that make up the Warburg effect are glucose 
uptake, lactate secretion, and oxygen availability.[1,2]

Most differentiated cells predominantly convert 
glucose to carbon dioxide when oxygen is present 
by oxidizing glycolytic pyruvate in the mitochondrial 
tricarboxylic cycle. The metabolic shift in cancer 
cells, particularly skin cancer cells, is constituted of 
enhanced glycolysis, activated anabolic pathways, 
including the generation of amino acids and pentose 
phosphate, and increased fatty acid biosynthesis.[3-6]

In this review, we aimed to discuss the effect of 
Warburg on cancer formation and progression in light 
of the literature.

 

LACTATE METABOLISM
High levels of lactic acid were first identified in 

the muscles of hunted deer in 1780 by Carl Wilhelm 
Scheele.[7] Since then, the glycolytic pathway and the 
notion that a lack of oxygen results in fermentation 
and the formation of lactate have come to be 
better-understood thanks to Pasteur[8], Meyerhof[9], 
and A.V. Hill.[10] 

The concept that lactate is a waste product 
that must be eliminated from the muscles and 
blood-preferably by being converted to glucose in the 
liver via the Escherichia coli cell cycle-was developed 
as a result of this early research. When there is enough 
oxygen available, experiments have demonstrated 
that lactate is a potent fuel and signaling molecule 
that is often created and circulated in the body.[11] 
Despite this data, many medical schools continue to 
wrongly label lactic acid as a “hypoxic waste product.”
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TUMOR METABOLISM
According to a research, axillary veins from 

chicken wings with sarcomas exhibited lower glucose 
levels and greater lactate levels than those from 
limbs without tumors. A similar strategy is used by 
Warburg et al.[12], who measured the arteriovenous 
differences between tumor beds in rat tumor models. 
They found that veins released more lactate and less 
glucose than arteries, which continuously supplied 
tumors, indicating that there may have been a net 
release of lactate in the normoxic tumor bed. The 
Warburg effect is an aberrant behavior of tumors to 
create lactate in a normoxic environment. Warburg 
did not discuss in detail the significance of lactate 
production and accumulation in cancer; however, 
later claimed that lactate is the end of glycolysis 
in cancer. The idea that lactate production results 
from oxygen deprivation have persisted due to the 
reputation of early researchers and the absence 
of more sophisticated techniques to study lactate 
metabolism.[13–15]

THE WARBURG EFFECT
According to this theory, the Warburg effect is 

related to poor mitochondrial function and energy 
metabolism. Contrary to the majority of healthy 
tissues, Warburg discovered that cancer cells 
frequently “ferment” glucose into lactate, even 
when there is enough oxygen present to enable 
mitochondrial oxidative phosphorylation. In other 
words, oxygen prevents the fermentation of sugars 
(the Pasteur effect), identifying glucose to lactate 
conversion as a predicted reaction to hypoxia. Thus, 
hypoxia may cause lactate production in cancers 
and malignancies may be hypoxic. Complete 
glucose catabolism employing mitochondrial 
oxidative phosphorylation to increase adenosine 
5'-triphosphate (ATP) generation satisfies the energy 
needs of cell growth.[16–18]

According to theory, a small organelle called 
the mitochondria creates the majority of the ATP 
needed by the body. According to Warburg’s 
theory, mitochondria are not fully functioning and 
their function in cellular respiration is muted. In 
both aerobic and anaerobic glycolysis, lactic acid 
is generated. Anaerobic glycolysis develops in the 
absence of oxygen, whereas aerobic glycolysis can 
start in tumor cells when respiration is impaired. The 
presence of oxygen can cause an aberrant Pasteur 
effect since it usually causes anaerobic glycolysis and 
lactic acid generation to decrease in most normal cells. 

Glycolysis, a process that takes the place of breathing, 
may be a sign of cancer rather than its primary 
cause. The main source of nicotinamide adenine 
dinucleotide (NAD+) in hypoxic situations is lactate 
dehydrogenase, which turns pyruvate into lactate. 
Tumor cells are particularly prone to this response. In 
cancer cells, increased glucose absorption and lactic 
acid generation occur during aerobic glycolysis while 
oxygen is present. Most cancer cells have excessively 
expressed glycolysis-related genes.[17,18]

Factors Affecting the Warburg Effect

The high glycolytic rate used to fuel mitochondrial 
oxidation has a unique relationship to glucose 
metabolism and rapid cell proliferation (as in 
cancer cells and non-malignant cells). In contrast to 
benign carcinomas and normal tissues, aggressive 
malignancies have notably high levels of glycolysis in 
aerobic conditions.

Most cells absorb glucose and release some of the 
carbon back into the culture medium as lactate when 
growth agents encourage cell growth. In experimental 
models, glucose deprivation or inhibition of glycolysis 
frequently harms the proliferation and development 
of cancer cells.[19,20]

The discovery of the tumor-specific M2 pyruvate 
kinase (PK)[21] and the connection between tyrosine 
kinase signals and subsequent phosphorylation in the 
M2-PK inhibitor complete the metabolic portrait.[22,23]

Glycolysis in Cell Types

Aerobic glycolysis has been found to be more 
prevalent in testicular and retinal tissue, while 
respiration was suppressed in embryonic tissue. 
Additionally, exposure to cyanide and molecular 
nitrogen causes an increase in glycolysis by irreversibly 
suppressing respiration.[15,17]

The Warburg effect has an important role, 
especially in oncological imaging and treatment. In 
order to characterize lesions and separate disorders 
from one another, a variety of diagnostic techniques, 
particularly in MRS, are utilized in the diagnosis. 

DIAGNOSTIC MODALITIES
Positron emission tomography: Aggressive 

cancer cells consume large amounts of glucose about 
20–30 fold compared to normal cells and glucose 
fermentation is linked to aggressiveness in cancers. 
Metabolic profiling using the labeled substrate has 
shown that the carbon atoms of glucose predominantly 
occur in lactate, fatty acids, and nucleic acid-associated 
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ribose, reflecting both the high proliferation rate 
and the reduction of oxidative phosphorylation in 
aggressive cancer cells. Also, metabolic profiling 
revealed a progressive loss of respiration and an 
accompanying dependence on glycolysis for cell 
growth.[24,25] It is diagnostically exploited by the 
utilization of [18F]-fluoro-2-deoxyglucose positron 
emission tomography (FDG-PET).[26]

Magnetic resonance spectroscopy (MRS): 
The concept of nuclear magnetic resonance (NMR) 
spectroscopy, which makes use of radiofrequency 
waves to reveal information about magnetic nuclei 
(such as 1H, 31P, 13C, and 15N) in a magnetic field of a 
certain power, was first proposed in 1921. The nuclei 
start to resonate shortly after absorption, and during 
this process, the various atoms in a molecule vibrate 
at various frequencies. For kinetic and structural 
research on a variety of materials, including solids, 
liquids, and gases, NMR has been utilized. It is just 
one of many spectroscopic techniques that are used 
frequently in biology.[27–30]

The in vivo biochemical data provided by MRS 
includes the peaks on the spectra that correlate 
with different metabolites. On two-way axes, 
proton spectra are shown. The vertical (y) axis 
shows signal amplitude or concentrations, while the 
horizontal (x) axis displays the frequency chemical 
shift of the different metabolites (in parts per million, 
or ppm). The reading of a spectrum is from right to 
left. Depending on the echo time (TE), metabolites 
can be detected using proton MRS. Two kinds of 
spatial localization methods for MR spectroscopy 
exist (single-voxel and multi-voxel techniques).[31] 

At 1.5 Tesla magnetic resonance imaging (MRI) 
scanner:

• Metabolites can be seen using intermediate to 
long TE (144-288ms): N-acetylaspartate (NAA), choline 
(Cho), creatine (Cr), and possibly alanine (Ala), and 
lactate (Lac).

• Metabolites can be seen using short echo-time 
acquisitions (TE<40 ms): Myo-inositol (Myo), 
glutamate and glutamine (Glx), glucose (Gc), some 
macromolecular proteins, and lipids.[32,33]

 Lactate levels rise markedly in situations where 
anaerobic glycolysis takes control instead of aerobic 
oxidation, such as brain ischemia, hypoxia, convulsions, 
metabolic abnormalities, and when macrophages 
accumulate in the site of acute inflammation and it 
can accumulate in tissues with poor washouts such 
as cysts, necrotic tumors, and tumors with cysts, 

normal pressure hydrocephalus. It is detected at 
MRS as a doublet (twin peak) at 1.33 ppm. Variable 
projection of the peak at various TEs defines lactate. 
The doublet peak projects above the baseline for 
very short or very long TEs (30 or 288 ms), however, 
it is inverted below the baseline on acquisitions using 
intermediate TEs (135/144 ms).[32-37]

Diagnostic Applications

Mitochondrial disease: Production of ATP 
is hampered. Low ATP causes glycolysis to be 
upregulated, which causes an excess of pyruvate 
to be either transaminated to alanine or decreased 
to create lactate. The widespread consensus is that 
venous lactate acidosis, lactic acidosis, or high lactate 
is a clinically significant signal of mitochondrial 
dysfunction. Even in the context of normal venous 
lactate values, cerebrospinal fluid (CSF) lactate levels 
might be increased. Therefore, in patients with 
neurological symptoms, CSF lactate levels may be a 
more accurate diagnostic indicator of a mitochondrial 
problem than venous lactate. In both cerebral white 
and gray matter, the two most noticeable MRS signal 
abnormalities seen in mitochondrial diseases are 
NAA decrease and lactate deposition. Even in the 
absence of systemic lactic acidosis, patients with 
mitochondrial dysfunction show elevated lactate 
levels in their brain tissue. MRS lactate and Lac/Cr 
are increased in children with mitochondrial disease. 
Atrophy of the cerebrum is a frequent symptom as 
mitochondrial disease manifests in both childhood 
and adulthood. Leigh syndrome (subacute 
necrotizing encephalomyelopathy), the prototypical 
mitochondrial condition, is characterized by focal, 
bilateral, symmetric brain lesions affecting the basal 
ganglia and periaqueductal gray matter. It can also 
include vomiting, stiffness, brainstem dysfunction, 
dystonia, aberrant eye movements, and numerous 
organ involvements. Pathologically speaking, 
these focal brain lesions are necrotic and linked 
to demyelination, vascular growth, and gliosis. 
While bilateral lesions in the putamen and basal 
ganglia nuclei are the most common symptoms of 
some mitochondrial syndromes, other forms of the 
mitochondrial disorder may only affect one subregion 
of the basal ganglia, such as the globus pallidus or 
the substantia nigra and medulla with relative basal 
ganglia preservation.[38-47]

Neoplasia-tumors:  Nearly all brain tumors 
have diminished NAA signals, as well as frequently 
elevated levels of Cho, which results in elevated 
Cho/NAA ratios. Given that NAA is thought to be 
predominantly of neuronal and axonal origin, the 
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reduction in NAA is frequently interpreted as the 
loss, malfunction, or displacement of normal neural 
tissue.[31] Rapid amounts of Cho are frequently seen 
in regions with high cellular membrane turnover 
and substantially increased relative cerebral blood 
volume (rCBV) indicating tumor neovascularization, 
even if brain biopsy remains the gold standard. 
According to a meta-analysis, tumor recurrence was 
associated with considerably higher average Cho/Cr 
and Cho/NAA ratios than radiation damage.[48–52]

Radiation necrosis: A variety of variables, 
including the total radiation dosage, the size of the 
radiation field and radiation fraction, the quantity 
and frequency of radiation doses, the combination 
of chemotherapy and radiation therapy, the length 
of survival, and the patient’s age at the time of 
treatment, influence the course of the therapy. 
There are three phases of radiation injury: acute, 
early-delayed, and late-delayed. There have also been 
suggestions of effects on the immune system and 
fibrinolytic enzyme system. It has been demonstrated 
that oligodendrocytes are extremely susceptible to 
radiation. However, neurons are less sensitive. Early 
alterations in metabolic activity before the onset of 
neurocognitive symptoms or anatomic abnormalities 
visible on conventional MRI can be used to predict the 
structural deterioration in brain tissue after radiation 
treatment. It has been hypothesized that significant 
changes in brain metabolites, particularly a reduction 
in NAA, a neuronal marker, are caused by neuronal 
injuries, such as neuronal cell death from apoptosis or 
neuronal malfunction related to radiation exposure. 
In a study, it was found that the choline/creatine 
and Cho/NAA ratios were both significantly greater 
in radiation injury than in normal-appearing white 
matter, whereas the NAA/Cr ratios were significantly 
lower in radiation injury than in normal-appearing 
white matter.[53] 

Additionally, in cases of radiation necrosis, a 
strong lipid-dominant peak, together with a low Cho 
peak and a low NAA peak, was seen from the center 
nonenhanced region. For the diagnosis of radiation 
necrosis, the positive predictive values of a Cho/Lipid 
or Lac ratio of 0.3 and a Cho/Cr 2.48 were 100% and 
71.4%, respectively. A broad peak between 0 and 2 
ppm in radiation necrosis may be visible, which is 
likely caused by cellular debris that contains amino 
acids, lactate, and fatty acids.[54-64]

 

THE WARBURG EFFECT ON 
NEURODEGENERATIVE DISORDERS

Glucose is the only energy source used by the 
brain, which has a high need for energy metabolism. 
Decreased energy metabolism and glucose uptake 
in the brain are observed in neurodegenerative 
disorders such as Alzheimer’s disease (AD), 
Parkinson’s disease (PD), Huntington’s disease (HD), 
and amyotrophic lateral sclerosis (ALS).[65–68] Despite 
the variety, experimental and clinical research has 
demonstrated that metabolic abnormalities are 
prevalent in a wide range of neurodegenerative 
disorders.[69] Since tumors have many ancestries and 
genomic instability, cancer cells are similar genetically 
and phenotypically diverse.[70] Tumors, such as 
glioblastoma, ingest more glucose and rely on aerobic 
glycolysis for energy metabolism. The Warburg effect 
offers macromolecules for biosynthesis and growth 
when oxidative phosphorylation is switched to a less 
effective aerobic glycolytic route. There is a common 
misconception that cancer and neurodegeneration 
are two separate clinical conditions with completely 
different etiologies and treatment options. The 
hallmark of neurodegenerative disorders is 
progressive early neuronal death, whereas cancer is 
defined by greater resistance to cell death.[71] Cancer 
has been proven to have an inverse relationship 
with neurological disorders including AD.[72,73]  
However, there is increasing data that suggests 
cancer and neurodegenerative disorders may have 
similar pathogenic processes and treatment targets. 
Age is the main risk factor for both cancer and 
dementia.[74] Dietary restriction has been proven to 
be one of the best treatments for extending the 
life and preventing age-related disorders, including 
cancer and neurological disorders.[75–78] Cancer and 
neurodegenerative disorders can both be effectively 
treated with a wide variety of medications. For 
instance, it has been demonstrated that the retinoid 
X receptor agonist bexarotene, which is used to 
treat T-cell lymphoma, decreases amyloid beta (Aβ) 
plaques and improves cognitive impairments in AD 
models.[79–81]

USE IN TREATMENT
The effects of carbohydrate metabolism inhibitors 

on tumorigenesis are extremely potent.[82–84]

Methylene blue, a long-used medication, may be 
able to absorb electrons from NADH in the presence 
of complex I and give them to cytochrome C, thus 
offering a different route for electron transport. 
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In vitro, methylene blue improves glucose absorption 
while decreasing glycolysis and increasing oxygen 
consumption. Following acute therapy, methylene 
blue enhances rats’ regional cerebral blood flow and 
glucose absorption. Additionally, in vitro and in rat 
models of AD, PD, and HD, methylene blue protects 
neurons and astrocytes from a variety of stresses. 
Methylene blue promotes mitochondrial oxidative 
phosphorylation, stops the glioma cell cycle in the S 
phase, and reduces glioma cell growth in glioblastoma 
cells to reverse the Warburg effect. Therefore, 
methylene blue inhibits downstream acetyl-CoA 
carboxylase and cyclin-dependent kinases while 
activating AMP-activated protein kinase. Mounting 
data shows that increased mitochondrial oxidative 
phosphorylation via alternate mitochondrial electron 
transport may have protective benefits against 
neurodegenerative disorders and slow the spread of 
cancer.[71]

In conclusion, energy metabolism and 
mitochondrial dysfunction are linked to the Warburg 
effect. Lactate generation and buildup are important 
factors in the complex sequence of genetic and 
metabolic processes that lead to carcinogenesis. 
In particular, aberrant cell signaling brought on 
by excessively and chronically high lactate levels 
during carcinogenesis increases glucose uptake and 
glycolysis, boosts lactate generation, accumulation, 
and release, and affects mitochondrial function. It is 
believed to lead to an unsuitable positive feedback 
loop that the upregulation of angiogenesis, immune 
evasion, cell migration, and metastatic support due to 
the expression of monocarboxylic acid transporters 
contributes to oncogenesis and the development of 
cancer.
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