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ABSTRACT

Alzheimer's disease (AD), which is an advanced dementia 
progression, is one of the neurodegenerative disorders 
that result from the accumulation of amyloid plaques and 
neurofibrillary tangles in the brain. There are several risk 
factors that can be caused by AD such as genetic and 
epigenetic factors. Apart from this, factors such as aging, 
stress, and sleep disturbance are closely associated with 
AD. The biological clock also called the circadian rhythm, 
optimizes the day-night cycle so that living things adapt 
to their basic needs such as nutrition, sleep, and fertility, 
as well as external factors such as heat and light from 
the environment. Disturbances in the circadian rhythm, 
associated with the melanin hormone, trigger sleep disorders, 
obesity, cardiovascular diseases, and neurodegenerative 
disorders. In this review, sleep disorders caused by circadian 
rhythm disturbance and the relationship between sleep and 
AD were discussed.
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Dementia is the progressive and irreversible loss 
of mental function, especially memory.[1,2] Cognitive 
decline is closely related to mood changes that lead 
to a complete loss of personality. It mainly occurs 
in elderly patients, and Alzheimer’s disease (AD) 
appears in its advanced phases.[3] In 1907, German 
neurologist Aloysius Alzheimer discovered AD while 
examining his 51-year-old woman patient, Auguste 
Deter, who had suffered from memory loss, language 
and disorientation, and hallucinations. The term 
“Alzheimer” was first used by Emil Kraepelin.[4,5] 

The clinical symptoms of Alzheimer’s disease:[6-9]

Stage 1: It is the initial stage of the disease and 
cognitive weakness begins in the patients.

Stage 2 (very mild cognitive weakness): Patients 
start losing stuff and forgetting where they are. 
There is no decrease in communication abilities at 
this stage.

Stage 3 (mild cognitive weakness): Patients have 
difficulty in choosing words and forming sentences 
during speech. The planning skills of the patients’ are 
decreased.

Stage 4 (moderate cognitive weakness): The patient 

begins to be unable to recall relevant memories in 
his/her personal history. Disruptions begin to occur 
in the social lives of patients, they start to isolate 
themselves, and they begin to exhibit symptoms of 
depression.

Stage 5 (moderate to severe cognitive weakness/
early dementia): Confusion of place and time, as well 
as deterioration in motor functions (apraxia) and 
perception (agnosia), occur in patients. Patients need 
help to do their daily activities (such as eating, toilet, 
and dressing). 

Stage 6 (severe cognitive weakness/moderate 
dementia): The patients cannot find the appropriate 
words while speaking and their speaking skills 
regress. Since they are unable to hold their toilet, they 
need additional support in their daily lives. 

Stage 7 (very severe cognitive weakness/late 
dementia): The speech abilities of the patients 
become progressively worse or totally disappear. 

1ERBAS Institute of Experimental Medicine, Illinois, USA & Gebze, Turkey

Correspondence: Müzeyyen Aybüke Yayla. Institute of Experimental 
Medicine, 41470 Gebze-Kocaeli, Türkiye

E-mail: aybuke1941@gmail.com

Cite this article as: Yayla MA, Arda B, Kul Y, Erbaş O. Alzheimer's Disease 
Pathology and Sleep Quality. JEB Med Sci 2022;3(2):173-178.



JEB Med Sci174

Patients constantly need help.

The pathophysiology of AD is based on two basic 
hypotheses. One of these hypotheses is the amyloid 
hypothesis. This concept involves extracellular 
beta-amyloid (Aβ) deposits. Beta-amyloid molecules 
play a critical role in AD which is triggered by both 
genetic and environmental factors, and there is an 
increasing accumulation of Aβ in the brain in AD. 
Increasing Aβ  mass causes neuronal cell death, and 
loss of synapses, and leads to a progressive course of 
the disease.[10-12]

The second hypothesis is the deposition 
of neurof ibrillary tangles resulting 
from hyperphosphorylation of tau, a 
microtubule -associated protein that 
stabilizes microtubules.[13] Accumulation of 
hyperphosphorylated tau protein leads to loss of 
cellular and neuronal function and ultimately to 
apoptosis.[14]

Along with these two hypotheses, it has 
recently been generally argued that the decrease in 
cognitive functions due to relatively high levels of 
inflammatory response in the brain in AD and high 
immune gene activation increases the susceptibility 
to neurodegeneration.[15]

Aging is another important risk factor for AD 
formation. When we classify AD according to age: 
Early-onset AD is observed in people under 65 
years of age, while late-onset AD affects patients 
aged 65 and over.[16] Early and late AD differs in 
clinical, neuropsychological, neuropathological, 
and neuroimaging techniques.[17] In the brains of 
early AD patients, amyloid precursor protein (APP) 
causes the formation of amyloid plaques (APs). As a 
result of mutations in presenilin 1 and 2 (PSEN1 and 
PSEN2) genes, gamma-secretase, the enzyme that 
degrades APP, cannot be regulated in the brains of 
patients with early AD, and consequently, amyloid 
deposits increase. In late AD patients, apolipoprotein 
E (APOE), a protein that provides lipid transport 
between tissues or cells, controls the production and 
function of Aβ and regulates lipid homeostasis.[18-21] 
In peripheral tissues, ApoE is produced primarily by 
the liver and macrophages and mediates cholesterol 
metabolism in an isoform-dependent manner. 
ApoE4 is also associated with hyperlipidemia and 
hypercholesterolemia leading to atherosclerosis, 
coronary heart disease, and stroke.[20,22] In the central 
nervous system, ApoE is primarily produced by 
astrocytes and transports cholesterol to neurons 
via ApoE receptors, which are members of the low-

density lipoprotein receptor (LDLR) family.[23] Literature 
shows that APOE genotypes strongly influence the 
accumulation of Aβ to form plaques and cerebral 
amyloid angiopathy in AD brains.[24]

EPIGENETIC FACTORS
Epigenetics is the study of changes in gene 

function that are inherited mitotically or meiotically 
and do not require changes in the deoxyribonucleic 
acid (DNA) sequence.  The initiation and progression 
of AD occur with the interaction of various factors, 
including aging, genetic mutations, metabolic activity, 
and nutritional disorders, as well as environmental 
and social variables.[25] Decreased DNA methylation in 
the brain impairs neural plasticity, prevents memory 
formation, and leads to memory loss with aging in 
AD patients.[19,26] In addition to aging, cerebrovascular 
diseases, which are other epigenetic risk factors, are 
the most frequently reported precursor factors of 
AD. In addition to all of these, the risk of AD is further 
enhanced by variables including smoking, diabetes, 
hypertension, obesity, dyslipidemia (increasing blood 
cholesterol level), traumatic brain injury, marital 
status, stress, and depression.[27,28]

CIRCADIAN RHYTHM
Living organisms adapt to their environment in 

order to meet their basic needs such as protection, 
nutrition, mating, and survival. They also adjust 
their biological clocks by optimizing their night-
day cycles.[29] The circadian system manages 
various physiological functions such as sleep-wake, 
temperature, physical activity, and cognitive activity.
[30,31]

The circadian rhythm is controlled by 
transcriptional-translational negative feedback. 
The transcription factors BMAL1 and CLOCK form 
heterodimers and the transcription of genes is 
repressed by promoters containing enhancer box 
(E-box) elements throughout the genome. The 
combination of PERIOD (Per) and CRYPTOCHROME 
(Cry) repressor genes inhibits BMAL1 and CLOCK 
transcription.  The Per and Cry gene generates the 
biological clock by setting the circadian rhythm to 
a 24-hour period by creating negative feedback on 
Bmal1 and Clock.[31-33] 

The biological clock is regulated and synchronized 
by the suprachiasmatic nucleus (SCN) of the 
hypothalamus.[34,35] The SCN regulates the timing of 
humoral controls including sleep-wake, temperature, 
hunger-fullness, and cognitive function by sending 
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signals to numerous hypothalamic nuclei.[35,36] The 
SCN regulates output pathways that affect a variety 
of physiological functions using both neuronal and 
humoral signals. The proper timing of hormone 
release, feeding behavior, and body temperature 
fluctuations is determined by these output 
pathways.[30]

Photoreceptors containing melanopsin 
in the retinal layer of the eye sense the external 
environment and transmit it to the SCN. It regulates 
the secretion of melanocyte-stimulating hormone 
(MSH) by stimulating the pineal gland in the SCN. The 
MSH secretion is low during the day and increases 
at night. In this situation, the upregulated MSH 
levels indicate that it is time to sleep in the body. 
When MSH secretion increases rapidly while we are 
sleeping, it decreases in the morning, which is the 
signal to wake up.[37-39] Melatonin can control the 
timing of the circadian rhythm for up to 24 hours 
by flowing back into the SCN.[40] Negative factors in 
our daily life, such as poor quality nutrition, stress, 
decreased physical activity, night shift work, and 
jet lag, cause disruptions in circadian rhythm and 
cause cognitive dysfunction.[41,42] Anomalies in the 
biological clock as a result of irregularities in the 
circadian rhythm pose a risk for numerous diseases.[43] 
These include sleep disorders, depression, bipolar 
disorder, cognitive function, memory formation, 
neurodegenerative disorders such as AD, Parkinson’s 
Disease, Huntington’s disease, obesity, and cancer.[44]

SLEEPINESS FACTOR
Sleep is characterized by two general sleep 

states non-rapid eye movement (NREM) sleep which 
consists of three stages, N1, N2, and N3, and rapid 
eye movement sleep (REM). As NREM sleep deepens, 
electroencephalography (EEG) brain frequencies 
slow down. In the deepest sleep phase (N3) EEG or 
slow-wave sleep (SWS), a high slow wave activity is 
seen.[45] The SWS heals the brain itself after prolonged 
wakefulness, goes to rest, and maintains sleep 
homeostasis.[46] On the other hand, REM sleep is 
associated with dream states.[45]

Many regions of the brain are involved in 
the management of the sleep-wake process. 
Ventrolateral preoptic nucleus (VLPO) in the anterior 
hypothalamus, hypocretin neuropeptide neurons in 
the lateral hypothalamus, and locus coeruleus (LC) 
in the pons are brain regions that regulate sleep and 
wakefulness. The VLPO is the active area during sleep 
and contains galaninergic and GABAergic inhibitory 
neurons.[46] Lesions in VLPO cause sleep problems.[47,48] 

Hypocretins are neuropeptides that are expressed in 
neurons during awakening.[49,50] Hypocretins send 
intense stimuli to multiple nuclei, including the LC, 
which is the noradrenergic nucleus that amplifies 
arousal.[51,52] The VLPO and hypocretins send impulses 
to the brainstem, which regulates REM sleep.[53,54] 
Sleep-active VLPO and wake-active monoaminergic 
nuclei mutually inhibit each other, resulting in a rapid 
transition between sleep-wake states. Wake-active 
lateral hypothalamic neurons strengthen the arousal 
system and stabilize the balance between sleep-
wake.[55]

ALZHEIMER’S DISEASE AND SLEEP
Aging is the primary risk factor for many 

neurodegenerative disorders, and with aging, the 
daily function of the biological clock in the human 
body decreases.[56] Disruptions in the circadian rhythm 
affect sleep and misalignment of other physiological 
rhythms.[57-60] AD patients frequently have circadian 
rhythm and sleep-wake cycle abnormalities.[61-64] 
Compared to older individuals who are healthy, people 
with AD spend more time awake in bed and have 
more interrupted sleep.[65,66] In a study, it was shown 
that sleep disruption increases the risk of cognitive 
decline and AD.[58,66] In another study, a decrease in 
REM sleep time and slow-wave sleep fragmentation 
was observed in individuals with AD.[65,67,68] The 
deposition of Aβ plaques is thought to be interrelated 
between sleep disturbance and AD progression.[69-73] 

To determine whether sleep disturbance is associated 
with AP accumulation before cognitive impairment 
in AD, cerebrospinal fluid (CSF)[74] Aβ levels and sleep 
measures were performed in cognitively normal 
individuals. As an output of this analysis, the scientists 
found that low CSF Aβ levels were associated with 
poor sleep quality.[75] Another study found that poor 
sleep quality is associated with shorter sleep duration 
and greater Aβ formation.[76] These studies showed 
that poor sleep quality occurs when there is AP 
formation and before cognitive dysfunction.[77]

It is known that impairments in sleep duration and 
circadian rhythm happen with AP formation. These 
impairments negatively affect sleep quality and 
cause other bodily rhythms to go out of sync which 
in turn increases stress. Poor sleep increases stress 
and stress causes interrupted sleep. Different types of 
stress create changes in our sleep cycle and activate 
the hypothalamic-pituitary-adrenal (HPA) axis.[78] 

The study, which was done to show how the 
increased amyloid production caused by sleep 
dysfunction promotes AP formation, showed that a 
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key regulator of the sleep cycle, orexin, promoted 
staying wake in transgenic rats which caused increased 
AP formation and accumulation.[79,80] The increased 
AP load disrupts slow-wave sleep, which impairs 
the consolidation of human memory.[81] Slow-wave 
sleep is important for cleansing the human body. 
Inadequate sleep, inability to obtain sufficient wave 
sleep, and the elevation of oligomeric forms of APs 
are associated with AD.[82] 

In conclusion, multiple factors may affect AD 
pathology including sleep habits, age, gender, and 
sleep disorders. It has been known that sleep disorders 
raise levels of cerebral Aβ and hyperphosphorylated 
tau accumulation, thus it increases the risk of AD. 
In addition, damage to neuronal pathways such as 
cholinergic pathways that initiate and maintain sleep 
are thought to contribute to sleep changes in AD. 
Regression analysis revealed that the severity of 
the impaired slow release-sleep cycle connection 
predicted a greater medial temporal lobe tau burden. 
In studies, sleep-wake disorders are observed before 
AD is clinically diagnosed. Before cognitive disorders, 
sleep-wake abnormalities such as daytime sleepiness 
are frequently encountered in patients. In fact, sleep 
pattern changes that create problematic issues in 
patients’ life cycles are directly associated with the 
accumulation of tau and Aβ. Extended wakefulness 
may increase soluble Aβ levels in the brain and both 
exacerbate and accelerate the development of AD 
pathology.
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